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A number of papers is devoted to problems of small oscillations of viscous fluids. Waves
on the surface of a viscous fluid of infinite depth were examined for example in[1]. In [3]
a boundary layer method is developed which is applied to problems of oscillations of a
fluid in vessels in the case of small viscosity, [3-6] and others use this method to solve
a series of problems on oscillations of a low viscosity fluid in certain regions. Certain
general theorems on properties of characteristic oscillations of a heavy viscous fluid in a
vessel are established in [7]. 1n [8] the approximate expression for the decrement of damp-
ing of free oscillations of a heavy viscous fluid in a cylindrical vessel of infinite depth
is obtained. Results of experimental investigation of oscillations of a fluid in vessels
are given in [9}

In this paper free small oscillations of a viscous incompressible {luid are stndied in a
stationary vessel of arbitrary shape in presence of gravity. In the main part of this paper
the Reynolds’ number is assumed to be large (viscosity small) which makes it possible,
as in [2-6], to apply the boundary layer method, The investigation is carried out by a
method which is analogous to the one which was used in [10] in the study of motion of a
body with a cavity completely filled with viscous fluid. Asymptotic relationships are ob-
tained for eigenvalues and eigenfunctions of the problem on free oscillations of a viscous
fluid in an arbitrary vessel. Decrements of damping and corrections to eigenirequencies
due to viscosity are expressed through equations which depend only on the corresponding
eigenfrequencies and eigenfunctions of the problem on oscillations of an ideal fluid.
Computations are carried out for some specific forms of vessels.

In the last part of the paper the special character of motion of a viscous fluid near the
line of contact of the free surface with the wall of the vessel is elucidated. Here free
oscillations are examined for arbitrary Reynolds’ number,

1. We shall examine the motion of a viscous incompressible fluid of density p and
kinematic viscosity v in a stationary vessel (Fig. 1). The equations of motion of the fluid
have the form

Ui+ (U U = — 0 98 —gk - vAU,  divU =0 (LD
(

Here ¢ is the time, U is the velocity of the fluid, P is the pressure, g is the acceleration
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due to gravity, unit vector K is directed vertically upward, and index ¢ indicates a partial

1] . - . . 0 » ] Y M
derivative, Assume that L is a characteristic linear dimension of the vessel, T'=(L/g) % is the
characteristic time (of the order of period of oscillations), [ is the characteristic amplitude
of oscillation of fluid particles and the Reynolds’number R is large

B = 2T W1 = L’/zg"/zv‘l > 1 (1.2)
Equation (1.1) can be linearized if l (U ViU l < | Y, } With respect to the order
of magnitude wehave: |U| ~ I 771, {Ut] ~ I T2, For operator \// outside the boundary
layer the estimate \/ ~ L1 is correct, therefore | U |~ ILIT-1 Inthe
boundary layer individual components of vectors U and \/ have different orders of mag-
pitude (see below), however, the order of magnitude [ U l is here the same as outside
the boundary layer. Therefore the condition of linearization is reduced to the form

1<LL (1.3)

and in the following it will be assumed to hold.
Below the problem is examined in a linear formulation

and is solved in the form of series in terms of para-
meter R~% & 1. Since it is desirable that the error due
to non-linearity which is 0 (I/T), does not exceed terms
of the n<h approximation in the solution of the linear
problem, we must impose the condition ! / L <€ R-"2,
which is stronger than (1.3) (see also [5}). For com-

putation of the decrement of damping in the first approxi«
FIG. 1 mation the fulfillment of condition (1.3) is sufficient.
We can write the linearized equations of motion and
boundary conditions, in the form

Uy =—p'VP —gk +vAU, divU=01in D, U=0 o §

P au, U, ~ 8U, BU, U,
P o5 F —20v—* =P, 5 T E = e T ay =0 a.a
OF (xz, y, t
U, =2E8D oy

Here D is the region occupied by the flnid at rest and S and X are the wetted wall
surface and the free surface, respectively, in the condition of rest. A Cartesian system
of coordinates xyz is selected such that the plane xy coincides with the unperturbed free
surface X, while the z-axis is oriented vertically upward (Fig. 1). Conditions on free sur-
face expressing the equality of forces inside and ountside the fluid (P, is the constant
pressure outside the fluid) are taken with respect to 3, while z = F (x, y, f) is the equa~
tion of the perturbed free surface.

We are looking for the solution of the problem of free oscillations of a fluid in the
form

U = ¢Mu, P = P, —pgz + peMq, F = éf(x, y) (1.5)

where A is a complex eigenvalue and U and g are functions of coordinates x, ¥ and z.
Sabstituting (1.5) into (1.4} we arrive at the eigenvalue problem
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A= — Vg -+ vAu, divu =0 in D, u=0 on S

A 2w Ou, du,, ou,  du, d o (1.6)
uz_‘—g—q— 8z ! 0z+8x 0z + .=

u u
z —_ _Z
7 5y =0 /=300

It is required to determine values A+# 0 for which the boundary value problem (1.6)
admits a nonzero solution, and to find eigenfunctions U and ¢ for these A. The last condi-
tion {1.6) can be used for determination of the form of the free surface after solution of the
problem. Through appropriate choice of units of length and time measurement it is possible
to achieve that L ~ 1 and g ~ 1. Then, by virtue of (1.2), problem (1.6) will contain a small
parameter v < 1.

2. The solution of problem (1.6} is sought, as in [2 to 6 and 10}, by the boundary layer
method [11]. We assume

u=v+w, g=s5+h v=v>4aeyl L .

s= s sl o L. A= A% 4 VA L @1

Here W and % are functions of the type of boundary layer. These functions can also
be expanded in series of powers of V%, where all coefficients of their expansions W*, %
diminish rapidly with increase of distance from the boundaries of region D. Let us de-
signate by D¢ and ]}, regions of boundary layer adjacent from the inside to surfaces S and
3, respectively, and of thickness of the order of v *. Then it can be assumed that W =0
and h =0 outside Dg and Dy,

Let us require that the functions v and s and also W and 4, satisfy Equations (1.6).
Boundary conditions for these can be obtained in the following manner. Let functions
Vi, Si, Wi, hi, li, where i =0, 1 ..., & — 1, be already determined. For determination of
v* and 5% it will be required that these functions, together with v*, s', w' and K found
earlier, satisfy the condition un =0 at the wall S and the first of conditions of (1.6) on 3.

Here n is the unit vector of the inward normal to S.

k k

In the solution of the boundary value problem for v* and s” the value X will also be
determined at the same time. Then we shall determine the functions wk and Rk which,
taking into account v, st, wi, Al Al vF s¥, and AF already found, must satisfy the
condition of vanishing of components of vector U tangential to wall Sytwo conditions of
(1.6) of vanishing of tangential forces on 3, and also the conditions that wh 50 and
hj - 0 outside Dg and Dy, It is not difficult to convince oneself that the described process
for constructing the solution formally ensures satisfaction of equations and boundary condi~
tions with an error of the order of Vv(**1/2_ which tends to zero with increase of the
numbers of approximation k.
Since fanctions V and s represented by series (2.1) satisfy Equations (1.6}, we find
for the k-th approximation
k
2 AivE=t = — gk L AVE-2, divviF =0 (k=0,1,..)) (2.2)
i=0
where the term A v¥"2 in the first equation of (2.2) is not present when £ =0, 1. If all
A == 0, then from (2.2) it is easy to obtain by induction that all v5 are potential vectors in

D and A\fk == {(J. Then, by virtue of (2.2} we have
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k
vk = 7ok, At =0, st = — S Mgt (k=0,1,...) (2.3)
i=0
In the last of equations of (2.3) the fact that function @" is determined with accuracy
to an arbitrary function of time, is already utilised. Below we limit ourselves to the ex-
amination of v°, s°, A%, v, s!, Al, and also w°and A° which will simply be denoted
by W, A.
As follows from the above-described process of determining the solution, we have for
functions v°and s © the boundary conditions v°n =0 and A°s° = gv,° on X.

Utilizing Equations (2.3), we obtain

o P ) S
AP =0 b, =0 S, Y=l
vO — vwo’ 80 _— _kowc

The eigenvalue problem (2.4) for ¢° describes free oscillations of an ideal fluid and
has a discrete spectrum of purely imaginary eigenvalues A° = 4 0y, oy > 0,
m=1, 2, ..., with finite mutliplicity [12]. The eigenfunction ‘I)m corresponding to the fre-

quency @ ,, satisfies the boundary value problem 2.9

AD, =0 inD, 3B, /on =0 ons, dD, /dz = (0,2 /g) O, on =

We shall look for characteristic oscillation of a viscous fluid which, as v + 0, passes
into the m-th oscillation of an ideal fluid, i.e. we shall write
¢* = D, A == ion
For functions W and %2 we have, in accordance with what was said above, the bound-

ary value problem
Aw = — T h -+ vAw, divw =0 in Dg, Dy

.

W= —v® on S w-—>0, h—>0 outside Dg, Dy

3w, +v.°) " 8(w, +v,°) _ 0 (w,+2,°) + 0w, +v,°)
0z ' dz - az oy

Here W* is the projection of vector W on the plane tangential to S; vector v on §

(2.6)

::Oon E

also lies in this plane by virtue of relationship v°n = (). Let us find the asymptotic
solution of the problem (2.6) separately in regions Dg and Dy as v + 0. In the region Dr,
which is the intersection of these two regions and which is adjacent to the contour I (the
line of contact of free surface X and walls of vessel 5) the solution has a more complicated
character.

In the region D we introduce curvilinear orthogonal coordinates &n{ such that the
surface { = 0 coincides with surface S and such, that in the region Dg, {>0.Let Hz, H,,
and H, denote the corresponding Lamé's constants, H:°, H,°, and Hy° their
values when { =0 and wg, w,, and wy the components of vector W in these coordinates.
Without loosing generality we set J{;° = 1. Then, with accuracy to the infinitesimals
of higher order, { is the distance from surface § along the inner normal and Wy is the
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projection of W on the normal n. We also write
{ = v'a, wy = Vi, 2.7
and pass in Equations (2.6) to variables £, panda. Taking into account that Cn v"#, and @1 in

Dg and omitting infinitesimals of the order v* and higher in equations of motion (2.6),
we reduce these equations to the following form (see also [10])

oh 0. _  8h , Ow o o |, Ow,
w0 AMus—gtag.  Mon=—gitog

o . o . orr 0%, (2.8)
P H 0 + e (Hw) + HH S e = 0

Since k -+ 0 outside region Dg, i.e. when @ + 0, it follows from (2.8) that & = 0. Then
we obtain the following boundary value problem for wtaking into account condition {2.6)

on §
DPw* . I,
Ogrk LA T
Aow* = preal Divw* e .
w¥* o= — v° when o =0, w¥ 50, w,—> 0 when a0 .

Here w* is a vector with components wg, and wy, and Div designates divergence
operation with respect to two-dimensional vector on the surface S.
From (2.9) we shall determine first W* and then w,
w* = —voexp (Y A°a), wa= (Divv®’/ A% exp () )
where we have selected the branch }/'A°, for which Re }/4° <7 0. Retuming to
Q

variables { and w {» according to (2.7) and taking into account the equality v° — VS,
we obtain finally in DS

WHE M D)= — Ve’ (E, M, Oexp (VA /), A =0
we (&, 0, ) = (Vv / V) Div [V €, n, O)]exp (VAo vg) (210

In region D5, we write by analogy to (2.7)

z = v, w, = Vi (2.11)
and pass in equations and boundary conditions (2.6} to variables #, ¥ and 3, neglecting
the infinitesimals of higher order in v. By analogy to (2.8} and {2.9) we obtain Equations

0y 2w ow dw
— o . x ) . y B Ty
h=0, Aw,= R ’ A w, = T ' T 4+ 3y ~+-
Boundary conditions (2.6} on ¥ and conditions on the boder of the boundary layer yield
in the first approximation, with consideration of Equations (2.4) and (2.11),

dw,

= 0 (212

311)A . a?) ° 6v ° 32@0 Sw 62(])0

SR i, T 2 RN SO Vo Oy =0

ag — VY ( 5. T 5 ) LA P v ey When B
(2.13)

Wy, Wy, W3—>0 as B> —o0

Let us solve Equations (2.12) with conditions (2.13) (first for w_ end w,, then for w,@)
and change to the variables z and w,
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we(z, Y, 2) =2 (;, )l/’ g;g: (z, y, 0) exp ( — (%"_Y’:z) , Re ]/f’ <0
oy =2 () 2 e,y 0 exp (— (E)) 219
w, (z, Y, z)=—%iz%’—(x, Y, 0)exp<— (%)1/%), h=0

Here Laplace’s equation for ¢° was used. Solutions of the form (2.14) were obtained
in[8]). As was assumed, above solutions (2.10) and {2.14) decay rapidly (exponentially)
when §> v, | zl >> v', i.e. outside the boundary layer. As was noted in [3], the
components of vector W tangential and normal to the boundary of region D, have different
orders of magnitude; moreover these components are larger in Dg, than in D5 (see (2.10)
and (2.14)).

Let us estimate functions W and A in region D, adjacent to contour I". Thickness of
this region along the normal to [ is of the order of V¥, and for the differentiation operator
in D, generally speaking, the estimate |</|~ v™"/: is appropriate.

Therefore, since |w| £0(1) outside Dr , in Dy we will have |w| ~ 1 and
0w,/0z ~v-"», From Equations (2.6) it then follows that thl ~ 1, and, since
h=0 outside D, then } ~v% in Dy, The obtained estimates

|w|~1, ow,/0z ~ v R~ ~" in Dp (2.15)
will be used subsequently.

Functions v? and s! must compensate for the discrepancy in fulfillment of condition
un=0 and § and of first condition of (1.6) on 3. The discrepancy is due to solution in the
boundary layer of W and s, We shall write these conditions substituting u, g and A into them
according to Equations (2.1) and (2.3) (with accuracy to the infinitesimals of higher order)

u=Ug® + vEUQl - w, g = —A%° — v (A% + M)+ & (2.16)
A= A° - vl

and taking into account boundary conditions (2.4) for @°

0P wn g 9 (MREE20Me
—_37 - V—‘; ' 6Z - g
w, A° 24 Vv 0w, . (2.17)

on X

ittt

Here the orders of magnitude of w_ and 4 on 3 are taken into consideration and
infinitesimals of higher order have been dropped. We note that almost in the entire region
of 2 (with the exception of a narrow region with a width of the order of v, adjacent to
contour I'') it is also possible to discard the last three terms in the second condition of
(2.17), since they will be small (no larger than v by virtue of (2.14).

In the adopted approximation the solution of problem (1.6) is determined by Equations
(2.16) in which w and 4 outside D are given by Equations (2.10) and (2.14). For deter-

mination of °, A°, @', and Al it is necessary to solve problems (2.4) and (2.17) for the
Laplace’s equation.
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The correction A! to the eigenvalue is of the greatest interest. It turns out that it can
: ° . :
be expressed in terms of A° and lp only. Into Green’s equation for functions @°,and @'

— ot an )d s+ S (@‘%q;—o — g° %(’;—i)ds =0 {2.18)

we substitute nomal derivatives of these functions on § and %, according to {2.4) and (2.17).

harmonic in BS ( o 3q,

We note that the last two terms in the second equation of (2.17) are finite {not small) only

% near contour I, where, according to estimates (2.15), they

in the region with area . v
have the order of magnitude O (1). Therefore these terms will make a contribution of the

order of ¥ to the integral (2.18) over & and cazn be dropped. The term (-—V'/,) cannot
be neglected from (2.17) since it will make a finite contribution in the integration over 2.

After indicated transformations Equation (2.18) is brought to the form

_§¢°wy ds—,Li»W}”l@O)zd JrS = 2 ds

]/v g

From this we find, by utilizing the theorem of Gauss-Ostrogradskii and the equation
divw=0

2A°A2 2 div (¢°w) YW s
; S(‘P)dS* S —n W= \ v (2.19)

bH D I3

Function W is finite in Dg and Dp, and small in Dy (see (2.10), (2.14) and (2.15))
and practically equal to zero in the remaining part of region D. Since region D¢ has a
volume ~ v and Dy of the order v, the main contribution to the integral (2.19) over D
will be made by the integral over Dg. In the region Dg it is possible to assume W= w*
with accuracy to infinitesimals of higher order (see {2.10)). Function \/‘P can be evaluated
at { =0, i.e. on the wall S. Furthermore, since W* rapidly decreases with increasing {in
the region Dg, the integration over Dg can be reduced to integrating first over { from 0 to
o and subsequently over the surface S. Then Equation (2.19) is converted into the follow-

ing form
(2.20)
S( )2d8~w§v‘p V¥ ay w-wsv(? § V({C) é(v;q};ds

In the integration over ¢, Equation (2.10) for W* was utilized.
We shall now quote the expression for J/ A° when Re V?:a <0

= tion,  VAE=—[1£)/V2UVon  0,>0
We substitute into Equation (2.20) expressions for A7, ]/}:5 and @° = D,,.
Equation (2.20) is solved for A* and subsequently A! is substituted into Equation (2.16)
for A.

Finally we obtain
(2.21)

. s > 1Y
M= o — (LEDVE 4, A, = (va)m)zdﬂ/ O 2ds) m=1,2,...)
V Q | \g K )
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Here A = )\m is the eigenvalue of the problem (1.6), close to the m-th eigenvalue of

the problem on oscillations of ideal flaid.

Equation (2.21) shows that viscosity leads to the appearance of a damping decrement
of characteristic oscillations (Re )\m < 0) and to a decrease of fundamental frequency by
an amount equal to this decrement. We note that the numerator of Expression (2.21) for 4,
is proportional to energy dissipation in the boundary layer while the denominator is pro-
portional to the kinetic energy of oscillation of an ideal fluid. In [7] it is pointed out that
problem (1.6) has when v > 0, a finite number of complex eigenvalues. Equation (2.21) is
applicable, only to a finite number of frequencies, i.e. for m <m,, where mg + 0o as v 0.

Equation (2.2]) is also valid in the case of plane oscillations of a fluid in an infinite
cylindrical vessel (channel) the generators of which are horizontal and perpendicular to the
plane of motion. In this case D must be taken as the cross-section of the cylinder by the
plane which is perpendicular to the generators, S must be taken as the curve along which
the plane intersects the walls of the vessel, and section 2, as the section of free surface
by the same plane.

3. For computation of )\m from Equation (2.21) it is sufficient to solve the eigenvalue
problem (2.5). This problem has been solved analytically or numerically for many shapes
of vessels, therefore computation of )‘m for these vessels is reduced to computation of
quadratures. We shall examine some examples.

Let the vessel have vertical walls and a flat bottom. The depth of fluid is constant
and equal to H. Solution of problem (2.5) in this case [1] can be sought in the form

D = ¥m (2, y) cosh k. (z + H) 3.1
Here function i/, is the solution of the eigenvalue problem
Ay, + kP =0 in X, /0N =0 on T (3.2)

where A is the Laplace’s operator in the xy-plane and N is the nomal to contour I lying

in this plane. Frequencies w  are expressed through values k, by the equation
O =gk tanh (km H (3.3

Substituting (3.1) into Equation (2.21) for A, we obtain after elementary integration
with respect to z

h (k H H
Ap = {t——(ikm_—)ls UV Vm)* + Em*Pm®] dl izm§ (Vm) —

bl 4y (Tt (§ i)
=

%

(3.4)

Eigenvalues A are determined by the general equation (2.21) in which @, and A  are
given by Equations (3.3) and (3.4). Considering that & and s, do not depend on H, we
simplify expressions (3.4) and (2.21) for 4, and A, for the cases of infinitely great and
infinitely small depth of fluid

) . ‘ -1
A== J_A: {S IV (bl —+ I"m:'q)m-z]‘”} (5 ll)m'la's> , O == ghy
: ) (3.5)
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Ao (Lt i)' hen //
m = ooty — A b when = o0
2V2k)
e {K L, \h
Ay = LS (\/l}lm,}“dS} L lprﬁ.“a’s‘> ) Oy = ghpy,
14 i)'
Ay == iy, — O LDV L as  H 50

2V 2
Let us examine a vessel in the shape of a rectangular parallelepiped for which the
region %, is a rectangle 0 < 2 <C a, 0 < y < b.
Solution of problem (3.2) in this case has the form

nny )

T m? n?
Yrn = €05 (—a—) €us ( P

kot = n? (’;{z" -+ F} (m, n==0, 1,...) (3.6)

Simple computation by means of Equation (3.4) gives

__2tanh (kpnt{) T2 /1 2 —08po I TR | 2 Fpmo V]
1 2t 2L )
21 e a%nl Kppn 3.7
T ohe ) ( 3 - -+ T Y (m? -+ n?=k0)
ch* (kpnH) a A ) che [k, H ) 7

where 8m° and § ; are Kronecker deltas. Equations (2.21), (3.3), (3.6) and (3.7) detemine
the solution of the problem in the case of a rectangular parallelepiped.Assuming that n = 0
and b 3> g in (3.6) and (3.7), we obtain the following equation for the case of plane trans-
verse oscillations of a fluid in a long rectangular channel

7Pm? |2 tanh{k,oll) 1 —(2H/}a) ~ m
a2 { m eh? (kppofT) | kmo=—— (m=1,2,...) (3.8

Ao ==

Here a is the width and H the depth of the channel.

If we also write H = «, Equations (3.8) and (3.5) will give characteristic frequencies
of plane waves of a viscous flnid confined between two parallel vertical planes

ntmg nmgv? ‘)'/4
a

Am=Xi (m)%‘—(i :’:l)< 4ad

(m=1, 2, ...)

This case was examined in [4] where the same expression was obtained for 'Xm' In the
other limiting case of a channel of small depth (H <« a) we find from (3.8) and (3.5)

nimigy? )‘/4

km=-_-f:i'n—a”i (gH)l/“—(i:]:i)(m"g‘ (m=1, 2,...)

Now we shall examine a vessel in the shape of a right circular cylinder of radius a
and depth H. Solution of problem (3.2) for a circle r £ a can be taken in the form

on =27 /2o (Wonr/2), "pmn(l) == S (Bmn? [ @) COS M (3.9)
wmniﬂ) = Jpn (a7 /7) Sin MO (m, n=1, 2,..)
Here r and P .are polar coordinates in the xy-plane with the center on the axis of the
cylinder, and y1 = are consecutive positive roots of derivatives of Bessel functions

m=0,1,...
I’ (mn) =0, 0 g <2< - - (n=1, o ) (3.10)

The numbers kmn are connected with Bomn through relationships “kmn = where
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m=0,1, ..,n=1,2, .., while the frequencies @, . are expressed through k., by means
of the general formula (3.3). The eigenvalues k np for m >0 are double valued.

Let us compute for Function (3.9) the integrals which enter into Fquation (3.4)

nm? , . ,
S (VPmn)?dl =g Jm® (}‘-mn)v S Prandl =" 0 (Bnn)
I
Pmn
Y na® na® .
& Pmn'ds == m_’"' S Iin® (%) xdz = ME {(Bmn?® — 17 I ? (Bena)
) 0
Pn Pian
3 m? N
S (T Ymn)? ds =1 5 tJm’f (@) o T (x)} o= K [~ T (@I ) -
bM ¢ 0
Yemn
i Hl" R —\ “ a o 9
o Ty ldx == S Sl (%) 2dz = 5~ (Bmn® — %) Tn® ()

4]

In the transformations some equalities for Bessel functions {13] were used and also
the condition (3.10). Substituting results of compnutations into Equations (3.4) and (2.21)
we find

4 . l"mng [ umnz + m2 tsnh(!"mnbr \z + 1 e (H/a) ]
cmn T gt h‘mn {Rnn® — M) a ,J cosh? (W, [ a)
Y
v g Ap, Emng Pemn £\ (m =0, 1,... )
Rebm == 3 yrgr  omt=Ufe(EI) 0 (1T0)0) @

In the particular case m =1 and # > a an analogous equation for the coefficient of
damping Re '\In was obtained in an approximate manner by a different method in [8].

In [9] experimental relationships are presented for the damping coefficient of character-
istic oscillations of a fluid in a cylinder as functions of H/a and the Reynolds'number
for the principal oscillation (m = 1, n = 1, p,, = 1.841). Results of calculations by
means of Equations {3.11) are, qualitatively, in complete agreement with experimental data
for various H/a and v. The theoretical values of damping coefficients Re A, , computed
from Equation (3.11) are approximately equal to experimental values obtained in [9] multi-
plied by 0.71. This ratio is maintained for various v and #/a. The same discrepancy
between theoretical and experimental data for H = ~ is noted in [9].

As an example of a vessel with varying depth we shall examine a channel with flat,
mutually perpendicular walls inclined at an angle of 45° to the vertical, The region D
occupied by the flnid is defined by inequalities | ¥| — a <{ z <. 0, where a > 0 is the
maximum depth of channel equal to one half its width. The characteristic oscillation of an
ideal fluid in such a channel, corresponding to the smallest frequency (principal form of
oscillation), is described by the potential

by == (y+a) 2, w?—=g/la (3.12)

Relationships (3.12) are presented in[1] and it is not difficult to verify directly that
they satisfy Fiquation (2.5). Substituting (3.12) into (2.21) and taking into account the
remark at the end of section 2 (here S is a broken line z = }yi -~ a for b’l Laand Yis a
section |y| £ a of the y-axis) we obtain after elementary calculations
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h=iVega—(14i)(gvi/es)

4. Let us examine the behavior of the solution of problem {1.6) near the contour [,
the line of contact of free surface % and walls S. Let us select the origin of coordinates
0 at some point of contour [, orient the z-axis vertically upward,the x-axis along the
tangent to I and the y-axis along the inward normal to I in the plane 3 (fig. 1). Limiting
ourselves to a small region around O, we replace the surface § by the plane tangent to §
at the point 0. The curve I is replaced by its tangent at O, i.e. by the x-axis, and we
shall examine the plane motion in the vertical yz-plane.

Equations and boundary conditions (1.6) take the form

Aa = — g + vAu, diva = 0in D, @ = O when z:==—y tan §

& ) '
I = A 2w % , *y + Y2 , f:_.uﬁ_ when z =0
z g g oz vz oy A

{4.1)

where U is & two-dimensional vector with components u_ and u, and J is the angle between
the surface of walls S and the horizontal plane at the point 0. On the basis of continuity
equation it is possible to introduce the stream function ¥ such that 4, == ¥ ' 9z, and
U, = — Q¥ / dy. Changing to stream function ¥ and introducing polar coordinates r
and @ in the yz-plane, we rewrite relationships {4.1) in the form

1 q T g
&= F[Fev+ > Ya—A¥], = —[20)+ > Yoo — AW |

when — § 0O
g%+ Aq + 2hv (Wo/ 1), == 0, r¥, + Wy =1y,

f=—W%,/Awhen 6=0, W, =Wy—0when 6=—8 (y==rcos®, z=rsind

(4.2)

Here subscripts r and § designate partial derivatives. Function f(r), as before, de~
termines the rise of free surface. We are looking for a solution of problem (4.2) in the form

W (r, 0) = M@ .. (4.3)

as r -» 0, where dots indicate terms of higher order with respect to r. In this connection
velocity components are of order rk when 7 » 0, components of stress tensor have the
order ¥* ! and the force acting on the wall has the order r®. Requiring boundedness of
velocities we will assume & > 0. Substituting (4.3) into the first equation of {4.2) we shall
determine the function ¢ in the form

g=g,(8) + V"2 (k — DM’ 4+ ( + 1MV + ... (k=1 (48

where primes indicate derivatives with respect to §. We substitute Expressions (4.3) and
(4.4) into the second equation of (4.2)

go + vtk — D) M7 4 (k- 1M + v (k—1) M 4
Jr(k—}-i)zﬂ/f]—{—...:()
From here weobtain for & # 1 an equation for the function ¥ which is easy to solve

M7+ (b + MV (k— D M7+ (kM =0
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M (8) = Cysin (k + 1)0 + Cycos (b + 1) 0 + Cysin (k — 1) 0 +
+ Cycos (k— 1) 0
Here Ch Cg, Cy, snd C, are constants. Now we substitute (4 3) and {4.4) into
boandary conditions (4.2) and equate coefficients of the principal powers of r. For k # 1
we obtain the conditions
M Ak 1M 28 (k—1) M’ =0, M’ — (k2 —1) M = ( when § =0
M =0 M’ =0 whenf——35 4.6)

Substituting the general solution (4.5} for M (f) into conditions (4.6) we obtain a
aystem of linear homogeneous equations for constants Ci

Ci+Cya=0, Cok+1)+Cotk—1) =0

— Cysin(k + 16+ Cyeos (k1) 8 — Cysin(k— 1) 6 4
+ Cycos(k—-1)8=0

Citk+1ecos(k+1)8+Cy(k+1)sin(k+1)8 +
+Cotk—Dcostk—1)6+C,(k—Dsin(k—1)8=0

For a nontrivial solution to exist, it is necessary to set the determinant of system
{4.7) equal to zero. A characteristic equation is obtained for the index &

(8* + 1) cos (b + 1) dcos (b — 1) 0 +
4 (8 — 1) Isin (k + 1) 6 sin (k—1)6—1] = 0

which for £ > 0, is reduced, by simple trapsformations, to the form
cos k8 = ksin § (4.8)

The amallest positive root k of Equation {4.8) is of interest becanse it determines the
prineipal ters of asymptotic expansion of the form (4.3). It is easy lo convince oneself that
such a root & (&) exists for any angle & in the interval (0, 7). The function % (§) de-
cremses monotonely from oo to 0.5 on variation of 8 from 0 to 77. Valunes of function & {5)
were determined by numerical solution of Equation (4.8) on an electronic computer. Seme
of the values fornd are presented in the table. A graph of function k (§) is represented in
fig. 2

4.7

2 3 5 1

Sm=0 Y5 Yi Vs /s s :
5248 0.53101 05029 0.5

3
2y km=oo 14504 1 07855 05946 0.

We note that in the case & =1 a logarithmic term

¥ appears in Equation {4.4) ; however the final resalt,
Equation (4.8) does not change in thia case.
i 1f & (8) sarisfies Equation (4.8}, then from system
\ (4.7} it is possible to find constants C, with accaracy
to an arbitrary factoer C.

3@ }CIZ——C;,:'C(Sinké+<:osé), =001 —ksind
I Ci=C{ -+ kysind

Since constants & and C, are found, this at the same
FIG. 2 time completely determines the function M (§} from (4.5}
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and the principal term of the solution of stream function (4.3). The constructed solution

depends only on the angle of inclination of walls and, apparently, describes the character

of singularity of solution of problem (1.6) near the contour I'; subsequent members of ex-

pansion (4.3) must also depend on other geometrical properties of surface S {in particular

its curvature). By means of (4.3) it is not difficult to determine asymptotic expressions

when r + 0 for velocities of fluid, stresses and other hydrodynamic quantities. Thus by

virtue of {4.2) the elevation of the free surface f () is proportional to 7 as 7+ 0.

10.
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